ABN 62 009 260 315

Suite 8, Level 3 47 Havelock Street West Perth WA 6005

PO Box 39 West Perth WA 6872

P: +61 8 9336 3388

www.gmeresources.com.au

ASX ANNOUNCEMENT/MEDIA RELEASE

15 February 2021

Six gold and three nickel anomalies outlined by soil sampling at the Abednego Project

- Six gold and three nickel targets identified along a seven-kilometre strike length of the highly prospective Federation shear zone
- Three new coherent nickel anomalies identified adjacent to gold targets
- Manchester and Newcastle gold targets returned strong gold results up to 141ppb Au and 104ppb Au¹ respectively, both coincident with a discrete bullseye magnetic anomaly
- Large Breakaway gold anomaly 1.2km x 0.15km (+10ppb Au) with results up to 110ppb Au¹
- New gold anomalies identified along strike from mineralisation at Federation and Federation North
- Ultra-Fine Fraction (UFF) soil sampling is a new exploration technique developed by LabWest in conjunction with CSIRO as a method to explore for minerals including gold and nickel under transported cover

GME Resources Limited ("**GME**" or "the **Company**") (**ASX: GME**) is pleased to announce the results of a detailed Ultra fine Fraction ("UFF") soil sampling program within the highly prospective Federation shear zone, at the Company's 100% owned Abednego Project, situated approximately 45km east of Leonora, in the Eastern Goldfields of Western Australia (Figure 4).

The UFF soil sampling program comprising 488 samples was completed at the Abednego Project during December 2022. The UFF soil samples were collected on a nominal 100 x 100m, 100 x 50m or 200 x 100m grid. The program was designed to target gold and nickel mineralisation below thin alluvial and sheetwash cover along the highly prospective Federation shear zone, extending to the north-northeast of the Homeward Bound, Federation and Federation North gold deposits (refer ASX announcement dated 14 December 2021 and Figures 1-3).


Results from the program have successfully delineated six discrete gold anomalies and three nickel geochemical anomalies. The Breakaway, Manchester and Newcastle gold anomalies are located directly along strike from Kin Mining NL's (ASX: KIN) recent Mt Flora gold discovery², located within 1km of the northern tenement boundary (Figures 1-3).

The new exploration targets provide sufficient detail and technical information to enable target prioritisation and the design of follow-up sampling, geological mapping and aircore drilling programs.

²Refer ASX:KIN announcement dated 11 February 2022

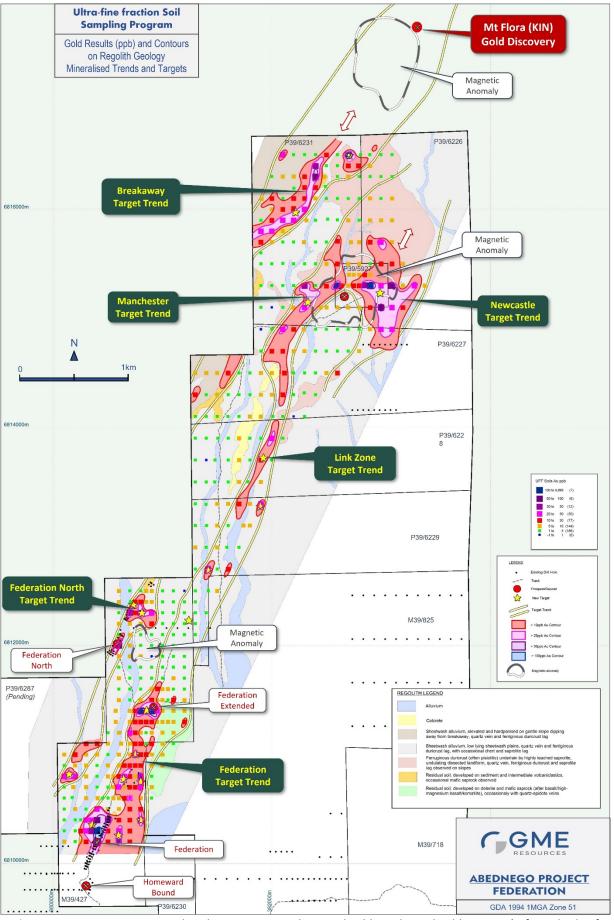

¹ Refer body of announcement, Table 1, and Appendix 1 for additional details.

Figure 1: GOLD ANOMALIES Plan showing proposed UFF soil gold results and targets, (refer to body of announcement, Table 1 and Appendix 1 for further details), plan underlain by aeromagnetic image.

Figure 2: GOLD ANOMALIES Plan showing proposed UFF soil gold results and gold targets, (refer to body of announcement, Table 1 and Appendix 1 for further details), plan underlain by map of regolith geology.

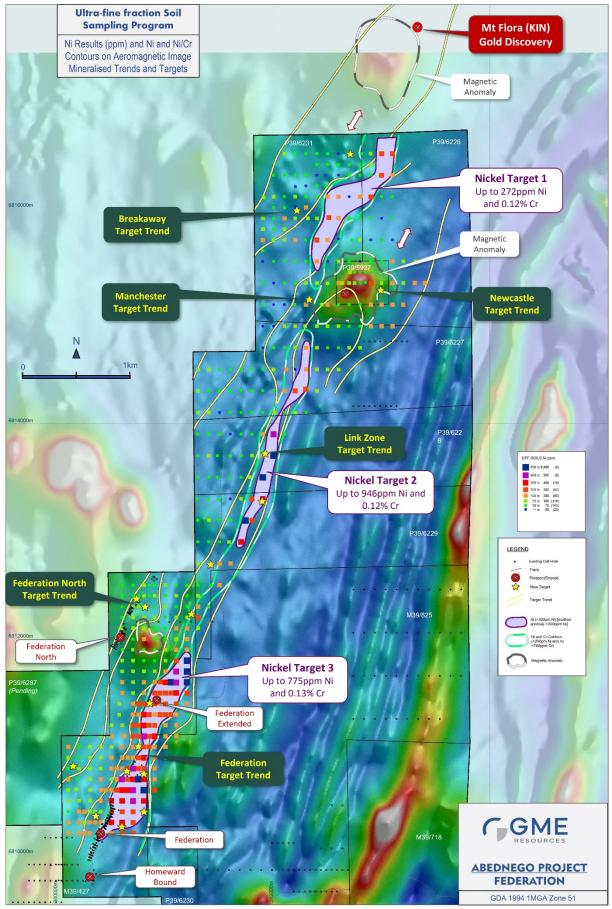


Figure 3: NICKEL ANOMALIES Plan showing proposed UFF soil Ni results and targets, (refer to body of announcement, Table 1 and Appendix 1 for further details), plan underlain by aerial photograph.

Gold Targets

Six gold anomalies have been outlined by the UFF soil sampling program all located within a seven kilometre zone along the highly prospective Federation shear zone, situated along strike from known mineralisation at the Federation and Federation North deposits (Figures 1-3). The soil anomalies overlie several parallel shears within the Federation shear zone. The Federation North shear is located predominantly within a sequence of felsic, sedimentary and basalt units and the nearby Federation shear occurs at the contact between felsic rocks and a sequence of intercalated high-magnesium basalts, komatiite flows and dolerite. Several bullseye aeromagnetic anomalies are spatially associated with the Federation North, Breakaway, Manchester and Newcastle gold-in soil anomalies.

The Breakaway, Manchester and Newcastle anomalies are located along strike from Kin Mining NL's (ASX: KIN) recent **Mt Flora gold discovery** (refer ASX: KIN announcement dated 11 February 2022), where gold mineralisation has been identified just to the north of GME's tenement boundary. Details of the UFF soil anomalies are listed below (refer to Figures 1-3, Table 1 and Appendix 1 for further details).

Strike length and peak assay values from within these targets include;

Newcastle:1.0km long with peak values of 104ppb Au, 378ppb Te, proximal bullseye magnetic anomalyManchester:1.7km long with peak values of 141ppb Au, 86ppb Te, Proximal bullseye magnetic anomalyBreakaway:1.2km long with peak values of 110ppb Au, 223ppb Te, adjacent magnetic anomaliesLink Zone:0.9km long with peak values of 21ppb Au, 156ppb TeFederation North:1.3km long with peak values of 56ppb Au, 91ppb Te, adjacent bullseye magnetic anomalyFederation:1.6km long with peak values of 193ppb Au, 86ppb Te, 50ppm As

The background metal content in soils was approximately 3ppb Au, 40ppb Te and 6ppm As across the entire dataset. Gold, tellurium and arsenic are considered excellent pathfinders for Archaean gold mineralisation in Western Australia. Values above 20ppb Au, 70ppb Te and 40ppm As are considered highly anomalous.

Nickel Targets 1-3

The three nickel-(copper-cobalt) anomalies identified by the recent program are associated with a sequence of intercalated high magnesium basalts and komatiite flows (Figure 3). Details of the anomalies are listed below.

Strike length and peak assay values from within these targets include;

Nickel target 1: 1.3km long with peak values of 272ppm Ni, 0.12% Cr, 7ppb Pt, 94ppm Cu and 75ppm Co.

Nickel target 2: 1.0km long with peak values of 946ppm Ni, 0.12% Cr, 9ppb Pt, 103ppm Cu and 175ppm Co.

Nickel target 3: 1.8km long with peak values of 775ppm Ni, 0.15% Cr, 11ppb Pt, 149ppm Cu and 159ppm Co.

The background metal content in soils was approximately 65ppm Ni, 0.02%ppm Cr, 3ppb Pt, 60ppm Cu and 20ppm Co across the entire dataset. Values above 200ppm Ni, 0.1% Cr, 7ppb Pt, 100ppm Cu and 60ppm Co are considered highly anomalous.

The nickel anomalies are located on a seven-kilometre trend which has had no previous exploration for nickel. The two southern targets are associated with high magnesium basalts and komatiite flows located in the hanging wall to the Federation shear and are situated adjacent to the Federation and Link Zone gold targets (Figure 1 - 3). The northern nickel target is located just to the north of the Manchester and Newcastle gold anomalies and may represent a continuation of this sequence. The nickel targets will be evaluated in parallel with follow-up exploration on adjacent gold anomalies.

Further Work

GME Resources plans to follow up prospective geochemical anomalies at the Abednego Project with additional infill and extensional UFF soil sampling, rock chip sampling and geological mapping. Future Aircore drilling will then be designed to test high priority geochemical anomalies delineated by these programs.

Further work is required at the Sonex prospect (adjacent tenement to Federation) and surrounding tenure, where a detailed UFF soil sampling program will be designed to assist with future drill targeting. Follow-up programs will be planned once this next stage of surface sampling and geological mapping has been completed and targets have been prioritised.

This announcement has been authorised for issue by Mr James Sullivan, Managing Director, GME Resources Limited.

For further information please contact:

Jamie Sullivan Managing Director Perth, Western Australia +61 8 9336 3388 jamiesullivan@gmeresources.com.au Mark Pitts Company Secretary Perth, Western Australia +61 8 9316 9100 markp@endeavourcorp.com.au

Please refer to Table 1 and Appendix 1 for further details on the historical sampling.

Abednego Project

GME's Abednego Project (31.5km²) is located within the highly prospective Kurnalpi Terrane of the Norseman to Wiluna Greenstone Belt, containing large structures and similar rock units to those hosting large gold deposits in the district. The Project is centred on the gold-prospective Federation and Sonex Gold Trends, which are interpreted shear splays off the regionally significant Keith Kilkenny Tectonic Zone to the southwest. Several early stage to advanced gold prospects have been identified within the Project, providing GME with a large pipeline of high-quality exploration targets.

The Abednego Project is strategically located within short trucking distance of a number of operating gold plants and has direct access to the Leonora - Laverton bitumen road which traverses the tenement holding (Figure 4).

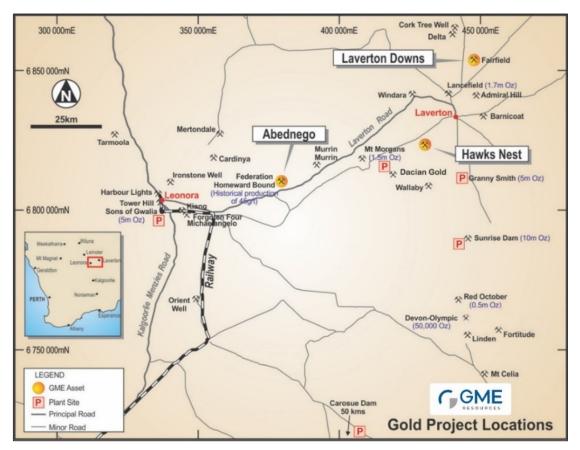


Figure 4: GME Resources Gold Projects.

Competent Persons Statement:

The information in this announcement that relates to exploration results is based on information reviewed by David Archer. Mr Archer is a Principal Consultant of Archer Geological Consulting and a Member of the Australian Institute of Geoscientists. Mr Archer has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results. Mr Archer consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Reporting of Exploration Results and Previously Reported Information:

This announcement includes information that relates to Exploration Results prepared and first disclosed under the JORC Code (2012) and extracted from the Company's previous ASX announcements (with the Competent Person for the relevant original market announcement indicated in brackets), as follows:

- Federation: "Soil sampling program commences over the Federation shear zone, targeting new gold anomalies at the Abednego Project" 14 December 2021 (D. Archer)
- Federation: "Drilling outlines further shallow, oxide gold mineralisation at Federation" 19 May 2021 (D. Archer)
- Federation: "Federation Gold Prospect Exploration Update" 12 March 2021 (M Gunther)
- Federation: "Abednego Gold Project Update" 3 February 2021 (K Joyce)

Copies of these announcements are available from the ASX Announcements page of the Company's website: <u>www.gmeresources.com.au</u>.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements. Where the information relates to Exploration Results the Company confirms that the form and context in which the competent person's findings are presented have not been materially modified from the relevant original market announcements.

About GME Resources Limited:

GME Resources Limited is an ASX listed (GME) exploration and development company with nickel, cobalt and gold interests in Western Australia. GME's principal asset is its 100% owned NiWest (nickel – cobalt) Project situated adjacent to Glencore's Murrin Murrin Operations. The Company has completed a Pre-Feasibility Study which has confirmed the technical and economic viability of a heap leach and direct solvent extraction operation at one of the largest undeveloped nickel/cobalt deposits in Australia. Further information is available on GME's website: www.gmeresources.com.au.

 Table 1. Federation shear zone, UFF Soil geochemical sample assay results

 Significant gold results defined using >=10ppb Au including a selected suite of associated multi-element results. Collar location and orientation information coordinates are MGA

 Zone 51, AHD RL. See Appendix 1 for additional details. BDL below detection level

Above 10ppb Au cut off.

Sample ID	Easting	Northing	Au (ppb)	As (ppm)	Bi (ppm)	Ca (ppm)	Co (ppm)	Cr (ppm)	Cu (ppm)	Ni (ppm)	Sb (ppm)
SS10004	380300	6810200	16.8	14.5	0.423	323	97.6	314	80.9	149	0.346
SS10001	380400	6810200	181.6	41.6	0.294	459	152	1030	65.2	316	0.363
SS10005	380500	6810200	13.3	27.5	0.28	494	55	626	66.5	198	0.268
SS10007	380600	6810200	33.7	10.2	0.125	82900	54.1	577	59.4	247	0.196
SS10007	380700	6810200	10.3	7	0.123	81600	45.4	643	53.3	245	0.171
SS10011	380250	6810300	10	9.2	0.349	199	45.4	237	69.8	87.7	0.308
SS10012	380300	6810300	24.3	12.5	0.45	255	115	198	75.8	116	0.408
SS10013	380350	6810300	47.5	11.6	0.313	792	64.1	227	77.6	114	0.301
SS10014	380400	6810300	193.9	11.9	0.172	14200	32.8	200	70	106	0.196
SS10015	380500	6810300	16.8	6.4	0.19	3100	36.3	823	49.5	305	0.194
SS10016	380600	6810300	23.8	12.3	0.139	31800	60	1070	72.1	396	0.229
SS10017	380700	6810300	13.9	10.4	0.134	48600	62.4	558	60.7	280	0.218
SS10021	380300	6810400	25.5	8.7	0.354	504	34.6	237	70.1	78	0.318
SS10022	380350	6810400	28.8	9.1	0.283	734	46.9	220	71.7	96.9	0.286
SS10023	380400	6810400	83.8	5.2	0.19	34900	27.9	180	55.1	89.5	0.2
SS10024	380500	6810400	41.3	13.8	0.185	2440	54.9	736	57.5	210	0.222
SS10026	380600	6810400	17.8	14.5	0.164	3480	50.3	786	60.5	280	0.209
SS10027	380700	6810400	10.2	8.2	0.124	39800	52.9	700	55.9	268	0.17
SS10028	380800	6810400	33.7	7	0.182	4250	48	675	71.6	296	0.188
SS10032	380400	6810500	29.1	8	0.276	1050	70	382	75.4	167	0.274
SS10035	380700	6810500	10.7	10.8	0.163	3870	78.8	868	66.2	448	0.199
SS10036	380800	6810500	19.3	7.9	0.206	2480	61.5	868	54	399	0.225
SS10045	380650	6810600	15.5	14.6	0.181	2150	102	996	67.2	333	0.219
SS10046	380700	6810600	21.7	11.8	0.14	2510	95.1	1110	71.9	480	0.198
SS10056	380597	6810703	21.2	17.8	0.163	1210	101	514	74.6	404	0.179
SS10058	380700	6810700	14.3	37.3	0.194	2470	66.8	690	69.3	324	0.236
SS10059	380750	6810700	10.9	10.5	0.137	13700	82.9	1480	64.6	520	0.194
SS10060	380800	6810700	22.9	7.3	0.125	70300	74.9	769	61.7	355	0.144
SS10062	380100	6810800	22.3	10.1	0.288	505	31	187	85.3	69.1	0.283
SS10063	380200	6810800	26.2	8.6	0.207	2720	24.3	193	84.2	76.5	0.22
SS10068	380600	6810800	10.3	19	0.238	1960	63.5	276	75.1	144	0.237
SS10069	380650	6810800	24.3	42.6	0.247	535	81.9	472	75.8	229	0.271

Sample ID	Easting	Northing	Au (ppb)	As (ppm)	Bi (ppm)	Ca (ppm)	Co (ppm)	Cr (ppm)	Cu (ppm)	Ni (ppm)	Sb (ppm)
SS10070	380700	6810800	19.3	39.4	0.308	527	159	947	75.8	423	0.29
SS10072	380800	6810800	31.8	7.2	0.126	50300	52.7	592	66.4	237	0.143
SS10081	380650	6810900	16	12.7	0.213	582	27.7	312	57.7	129	0.203
SS10082	380700	6810900	14.9	14.3	0.261	506	112	408	72.7	192	0.269
SS10083	380750	6810900	17.8	29.7	0.312	431	82.1	706	72.7	264	0.313
SS10084	380800	6810900	11.4	5.7	0.177	3110	61.6	1010	79	386	0.191
SS10088	380200	6811000	16.5	8.4	0.198	1340	24.7	179	56.1	67.1	0.208
SS10094	380750	6811000	36.8	15	0.248	598	36.6	448	62.2	163	0.195
SS10095	380800	6811000	15	7	0.188	7720	58.5	425	72.1	204	0.166
SS10096	380850	6811000	10.4	6.6	0.255	1760	46.4	660	72.4	242	0.211
SS10099	380300	6811100	13.8	7.2	0.258	2220	20.2	216	60.5	69.5	0.223
SS10101	380400	6811100	17.9	6.3	0.274	1760	18.9	212	63.9	79.9	0.202
SS10105	380750	6811100	10.5	6.8	0.191	3810	57.3	502	74.3	216	0.159
SS10106	380800	6811100	15.9	5.1	0.174	2450	60.5	1280	81.5	457	0.156
SS10108	380900	6811100	17.3	8.7	0.164	17100	70.2	700	64.9	380	0.145
SS10113	380700	6811200	24.5	8	0.229	1640	69.4	709	81.9	239	0.236
SS10114	380750	6811200	11.3	9	0.199	3580	58.1	685	69.7	227	0.19
SS10122	380750	6811300	14.8	5.5	0.189	3180	35.1	498	77.2	188	0.18
SS10123	380800	6811300	11.1	4.9	0.192	2850	31.5	654	74.8	314	0.187
SS10124	380850	6811300	14.5	7	0.233	2690	56.2	993	104	284	0.229
SS10126	380900	6811300	12.4	4.8	0.185	5060	26.7	791	96.4	176	0.182
SS10131	381200	6811300	11.6	7	0.142	5460	25	338	108	68.2	0.118
SS10134	380750	6811400	15.3	9.5	0.262	724	75.1	527	86.8	217	0.276
SS10135	380800	6811400	128.7	8	0.177	1750	41.8	497	79.4	248	0.185
SS10136	380850	6811400	40.6	7.4	0.205	2650	40.7	1040	75.2	289	0.203
SS10137	380900	6811400	119.6	10.9	0.24	1060	101	663	94.6	264	0.248
SS10138	380950	6811400	22.1	4.9	0.181	4160	38.4	752	149	138	0.188
SS10146	380900	6811500	12.8	6.9	0.213	3910	35.3	823	74	278	0.194
SS10151	381100	6811500	13.7	8.2	0.178	4420	39.6	1060	66.8	327	0.187
SS10157	380954	6811603	14.5	7	0.177	5920	40.9	715	77.2	276	0.172
SS10184	380600	6812000	55.1	7.8	0.278	1070	101	169	90.1	94	0.274
SS10203	380900	6812200	10.3	7.2	0.192	14000	29.9	228	82.8	77.2	0.223
SS10209	380699	6812302	56.5	10.8	0.155	1220	45.9	234	91	76.2	0.201

Sample ID	Easting	Northing	Au (ppb)	As (ppm)	Bi (ppm)	Ca (ppm)	Co (ppm)	Cr (ppm)	Cu (ppm)	Ni (ppm)	Sb (ppm)
SS10210	380750	6812300	11.7	10.2	0.193	2630	20.4	255	74.6	76.5	0.23
SS10211	380800	6812300	36.2	7.3	0.124	60200	30.6	134	66.3	56	0.133
SS10212	380900	6812300	22.7	4.8	0.127	45700	30.5	159	70.1	66.7	0.14
SS10220	380750	6812400	10.8	5.6	0.184	1570	17.5	204	74	64.8	0.207
SS10221	380800	6812400	17.6	13.8	0.183	3480	33.8	245	86.1	80.1	0.238
SS10241	381417	6812699	39.4	8.6	0.15	44500	32.1	242	72.5	92.1	0.169
SS10243	381600	6812700	10.8	7	0.228	1050	25.8	603	69.5	138	0.236
SS10260	381700	6813300	11.1	7.9	0.182	514	18.1	410	72.1	93.3	0.179
SS10262	381900	6813300	23.1	6.7	0.168	27700	56.7	767	80.3	389	0.174
SS10277	381900	6813700	10	7.3	0.162	20300	37.7	483	84.7	172	0.194
SS10286	382000	6813900	21	18.8	0.282	923	175	1200	103	401	0.297
SS10299	381300	6814300	10.3	7.3	0.343	805	27.8	183	65.1	79.6	0.306
SS10308	382100	6814300	11	6	0.155	3070	19.4	469	78.9	110	0.166
SS10315	381600	6814500	11.9	5.8	0.289	285	22.2	206	70	71	0.222
SS10320	382116	6814500	12.7	7.2	0.254	5760	48.9	746	59.2	123	0.23
SS10326	382600	6814500	16.6	5.3	0.204	23900	42.9	276	120	82	0.167
SS10333	382000	6814700	13.4	4.1	0.122	82800	22.6	212	42.8	59.6	0.119
SS10334	382100	6814700	12.4	4.2	0.099	4660	17.4	327	35.8	61.3	0.133
SS10348	382100	6814900	29.7	4.6	0.207	2650	19.3	132	48.2	78.9	0.186
SS10349	382200	6814900	10.7	3.6	0.188	867	38.8	359	36.8	82.4	0.236
SS10358	383000	6814900	29.8	6.7	0.276	2070	41.1	192	112	161	0.26
SS10359	383100	6814900	29.1	5.1	0.25	2810	21	202	92.1	133	0.218
SS10367	382300	6815100	25.9	2.8	0.196	30600	28.1	307	39.7	104	0.167
SS10373	382900	6815100	19.6	6.3	0.377	434	48	365	98.4	104	0.346
SS10374	383000	6815100	74	6	0.313	635	58.5	198	115	105	0.328
SS10376	383100	6815100	25.1	4.8	0.22	2150	28.9	259	112	107	0.239
SS10377	383200	6815100	11.8	7	0.406	388	63.6	207	101	117	0.342
SS10385	382300	6815300	43.5	2.8	0.14	100000	28.4	476	24.4	84.6	0.114
SS10387	382500	6815296	17.3	3.2	0.204	6300	19.9	429	39.1	94.9	0.182
SS10388	382600	6815300	141.1	2.9	0.157	9560	19.5	329	38	112	0.156
SS10389	382636	6815300	17.1	4	0.251	2820	23.6	442	54.8	82.2	0.222
SS10391	382750	6815300	17.1	5.3	0.298	831	27.3	203	54.2	82.7	0.246
SS10392	382800	6815300	12.6	5.3	0.335	78	20.4	191	45	50	0.294

Sample ID	Easting	Northing	Au (ppb)	As (ppm)	Bi (ppm)	Ca (ppm)	Co (ppm)	Cr (ppm)	Cu (ppm)	Ni (ppm)	Sb (ppm)
SS10393	382850	6815305	33	4	0.355	260	9.74	291	59.2	55.2	0.284
SS10394	382902	6815300	103.9	5.3	0.079	77200	12.8	350	119	242	0.12
SS10395	383000	6815300	24.1	5.5	0.489	840	13	248	162	76.6	0.304
SS10396	383096	6815300	71.1	5.8	0.221	1950	58.8	197	128	101	0.285
SS10398	383305	6815300	20.9	5.9	0.224	4140	37.2	227	102	130	0.229
SS10404	382850	6815400	12.1	5.9	0.362	493	29.2	196	66.3	64.3	0.303
SS10416	382600	6815500	11	6.1	0.377	401	27.5	419	57.6	92.7	0.325
SS10420	383000	6815500	18.4	6.5	0.411	201	32.2	178	79.6	58.8	0.364
SS10421	383100	6815500	13.3	5.2	0.313	1500	38.8	214	71.5	112	0.321
SS10430	381900	6815700	17.9	7	0.289	659	62.1	270	63.3	128	0.285
SS10437	382601	6815708	19.8	1.9	0.094	51800	10.1	611	29	42.4	0.098
SS10440	382900	6815700	10.3	5.5	0.318	2020	11.8	178	46.3	42.2	0.274
SS10441	383000	6815700	29	3.7	0.27	161	62.4	108	47.1	54.5	0.218
SS10444	381900	6815800	26.6	7.9	0.311	325	61.6	245	96.7	84.5	0.306
SS10445	382000	6815800	25.7	5.8	0.258	245	23.7	192	80.7	56.6	0.185
SS10449	382000	6815900	10.6	7.4	0.349	116	50.1	179	64.1	57.7	0.297
SS10451	382100	6815900	21.3	5.9	0.218	1090	46.2	280	94.5	112	0.222
SS10452	382200	6815900	21.6	4.2	0.23	6080	19.2	208	84.5	87.6	0.22
SS10463	382100	6816000	12.3	4.8	0.256	1200	32.7	171	75.2	65.6	0.213
SS10464	382199	6816010	15.6	3	0.118	5680	15.3	133	51.7	43.9	0.133
SS10465	382300	6816000	25.7	4.3	0.214	4550	28.6	196	83	123	0.222
SS10467	382000	6816100	13	6.8	0.375	393	25.2	186	68.9	88.8	0.307
SS10469	382200	6816100	15.1	6.7	0.317	409	26.4	204	82.2	78.6	0.27
SS10470	382300	6816100	16.1	5.3	0.229	307	14.1	222	67.2	57.2	0.21
SS10481	382300	6816200	11.2	6.7	0.369	379	23	189	53.9	42.2	0.287
SS10482	382400	6816200	10.2	4.8	0.211	894	13	244	56.2	52.2	0.242
SS10487	382300	6816300	11.5	5.6	0.265	1010	20.5	154	72.3	55.6	0.199
SS10488	382400	6816300	96.3	2.9	0.102	131000	20	119	65.7	45.1	0.121
SS10496	382400	6816400	30	6.8	0.311	1760	25.7	181	60.7	67.3	0.304
SS10499	382700	6816400	15.2	7.1	0.267	310	11.4	320	55.9	68.4	0.283
SS10501	382794	6816400	13	3.5	0.133	39700	35.3	286	43.3	72.9	0.13
SS10503	382100	6816500	21.4	6.8	0.343	1380	20.8	199	77.2	75.3	0.324
SS10507	382500	6816500	15.8	5.6	0.269	168	14.2	239	63.7	56.6	0.266

Sample ID	Easting	Northing	Au (ppb)	As (ppm)	Bi (ppm)	Ca (ppm)	Co (ppm)	Cr (ppm)	Cu (ppm)	Ni (ppm)	Sb (ppm)
SS10509	382700	6816500	109.8	4	0.174	57900	26.6	202	54.1	69.2	0.154

Federation shear zone, ultrafine soil sample results - summary statistics (excluding standards and duplicates)

Element	Units	Count	Min	Max	Mean	Median	StdDev	95%	98%	99%	99.5%
Au	ppb	466	0.5	193.9	11.065	5.9	19.17	31	72	110	141
As	ppm	466	1.9	50.3	7.499	6.6	4.76	14	18	30	41.6
Bi	ppm	466	0.066	0.489	0.240	0.230	0.083	0.396	0.416	0.431	0.443
Ca	ppm	466	78.0	144000	8361	1220	21627	58500	99000	105500	122000
Со	ppm	466	7.2	175.0	39.189	32.2	24.3	88.1	107.5	117	152
Cr	ppm	466	84.0	1480	365.381	243	256.8	951	1068	1185	1280
Cu	ppm	466	24.4	176.0	71.454	71.4	18.3	102	117	132	157
Ni	ppm	466	28.8	946.0	129.141	85.1	114.0	362	480	635	689
Sb	ppm	466	0.069	0.435	0.233	0.229	0.067	0.347	0.365	0.377	0.408

APPENDIX 1: JORC Code, 2012 Edition – Table 1 (Federation Shear Zone Historic Surface Geochemical Sample Results)

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Ultra-fine Fraction (UFF) soil sampling: A total of 488 (including standards and duplicates) were collected by GME Resources Limited over the Federation shear zone during December 2021. The UFF soil geochemical samples were collected at nominal 100 x 100m, 100 x 50m or 200 x 100m grid designed to cover a seven kilometre strike length of the Federation shear zone. All geochemical sampling completed by GME Resources Limited was located on GDA94 using a GPS. Samples were collected in the field by removing any surface vegetation, lag and topsoil and then digging down to a nominal depth of approximately between 10cm and 20cm. The collected sample was sieved to -2mm with and placed in a pre-numbered paper sample bag. GME Resources submitted all UFF soil samples to LabWest – Perth for analysis utilising sample preparation including separation and collection of <2µm fraction. Gold and multi-element analysis by LabWest's Ultrafine+ microwave digest with an ICP-EOS/MS finish was undertaken on the ultrafine fraction.
Drilling techniques	 Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc). 	No drilling completed
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No drilling completed
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 No drilling completed. Geological (regolith) logging was completed to an appropriate level of detail for soil sampling programs. Qualitative regolith and soil sample logging was completed using a standard set of codes Samples were logged in their entirety
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No drilling completed. Sample depth (nominally 20cm below surface) and location of soil sample recorded at each site. All samples were dry sieved (-2mm) and approximately 200 grams of minus 2mm material sampled in the field and bagged. No further subsampling is conducted. A 200g sample is considered appropriate for UFF soil sampling Soil samples were placed directly into prenumbered paper bags at the site location from which they were collected. Standards (prepared on site) were submitted every 50 samples.

Criteria	JORC Code explanation	Commentary	
Criteria Quality of assay data and laboratory tests	 JORC Code explanation The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheid XRF instruments, etc. the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 GME Resources submitted all UFF soil samples to LabWest – Perth for analysis utilising samples aration including separation and collection of <2µm fraction. Gold and multi-element analysis by LabWest's Ultrafine+ microwave digest with an ICP-EOS/MS finish was undertaken on the ultrafine fraction. Gold detection limit of 0.001 ppm Au (1 part billion) Multi-element analysis included. UFF+ UFF-PE UFF-PER Ultrefree DI (ppm) Ag 0.003 Cu 0.1 Al 10 Fe 50 As 0.5 Ga 0.05 Ba 0.2 Hf 0.002 Be 0.01 Hg 0.001 Bi 0.002 I 1 Br 1 In 0.001 Ca 10 K 10 Cd 0.004 La 0.05 Ce 0.05 II 0.05 Co 0.01 Mg 10 Cr 2 Mn 0.5 Cs 0.03 Mo 0.03 Element DL (ppm) Element DL (ppm) Nb 0.01 Th 0.02 Ni 0.2 Ti 2 Pb 0.05 Ti 0.003 Pt 1 ppb U 0.003 Rb 0.1 V 1 Re 0.0001 X 0.001 S 5 Y 0.05 Sb 0.001 Zn 0.2 Sc 0.2 Zr 0.1 Se 0.05 Si 0.001 Zn 0.2 Sc 0.1 Tr 0.001 Tr 0.02 Sr 0.1 Tr 0.001 Tr 0.02 Sr 0.1 Tr 0.001 Tr 0.02 Sr 0.1 Tr 0.001 S 5 Y 0.05 Si 0.001 Zn 0.2 Sr 0.1 Tr 0.001 Tr 0.02 Sr 0.1 Tr 0.001 S S S Y 0.05 Si 0.001 Zn 0.2 Sr 0.1 Tr 0.001 Tr 0.02 Sr 0.1 Tr 0.001 Tr 0.02 Sr 0.1 Tr 0.001 S S S Y 0.05 Si 0.001 Zn 0.2 Sr 0.1 Tr 0.001 Tr 0.02 Sr 0.1 Tr 0.001 Sr 0.001 Sr 0.001 Tr 0.02 Sr 0.1 Tr 0.001 Tr 0.02 Sr 0.1 Tr 0.001 Tr 0.02 Sr 0.1 Tr 0.001 Tr 0.001 Sr 0.001 Tr 0.02 Sr 0.1 Tr 0.001 Tr 0.001 Sr 0.001 Tr	per
Verification of	The verification of significant intersections by	every 50 samplesAnalyses were undertaken at recognized	
sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Not relevant for sufface samples Sample results and standards were reviewed the company's technical consultants. Results are uploaded into the company database, checked and verified All data is stored in a Company database system and maintained by the Database Manager. There were no adjustments to assay data. 	d by
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 Soil sample locations are located by handhe GPS to an accuracy of +/-5m. Locations are given in GDA94 Zone 51. Diagrams showing sample locations are 	ld

Criteria	JORC Code explanation	Commentary
	Specification of the grid system used.Quality and adequacy of topographic control.	 provided in the report. The topographic control is judged as adequate for geochemical samples.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The UFF soil geochemical samples were collected at nominal 100 x 100m, 100 x 50m or 200 x 100m grid designed to cover a seven kilometre strike length of the Federation shear zone. Follow up infill soil sampling may be considered to tighten and better resolve areas of anomalous gold mineralisation. Soil lines may be extended to close off some anomalies Not applicable for the reporting of geochemical sampling results
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Not applicable, this is early-stage exploration geochemical sampling and the orientation of sampling to the mineralisation is not fully known. The data is primarily an initial exploration reconnaissance sampling program and is useful for identifying broad geological trends. The orientation of the sample lines is perpendicular to the strike of the targeted Federation shear zone. The orientation of sampling is considered appropriate with respect to the structure being tested. Not applicable for this type of sampling.
Sample security	The measures taken to ensure sample security.	 Samples were bagged into numbered plastic RC bags and transported to the laboratory in Perth by GME Resources. The laboratory was sent a sample submission sheet detailing the sample numbers, method of sample preparation and analyses and a full list of analytes. The sample submission sheet was cross referenced with the samples on arrival at the laboratory. No sample preparation or analyses was to commence if there were any discrepancies
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Sampling and assaying techniques are industry- standard. No external audit has been completed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	preceding section also apply to this section.) JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Federation shear zone target overlies tenements M39/427, M39/825, P39/6231, P39/5927, P39/6226. P39/6227, P39/6228, and P39/6229 which are 100% owned by GME Resources Ltd. The project is located 45km east of Leonora in the Eastern Goldfields of Western Australia. The tenements are located within the Mt Margaret Mineral Field in Leonora region of Western Australia. The project lies within the Minara Pastoral Lease. There are no impediments to the security of tenements The tenements are in good standing and there are no known impediments to exploration on the properties.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Previous historical exploration work by other companies includes geochemical surface sampling, mapping, airborne and surface geophysical surveys, AC and RC drilling. Historical geochemical samples have been collected by Delta Gold Limited, Placer Dome Asia Pacific and GME Resources.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Federation shear zone is located on the western edge of the Murrin Murrin Tectonic Zone, approximately 15km NE of the Keith Kilkenny Tectonic Zone (KKTZ). The interpreted Federation shear, a NE linking splay between the KKTZ and the Celia Tectonic Zone (CTZ) runs through the project. It represents the contact between an intermediate sedimentary package to the west and a differentiated mafic and interflow sediment package to the east. Locally, the sequence west of the Federation shear strikes north south and is comprised of andesitic tuff, mafic volcanics, fine to coarse gained sediments and chlorite-actinolite schists. The mafic package east of the Federation shear strike of 020° and is comprised of fine to medium grained dolerite, coarse grained gabbro, intrusive porphyritic gabbro ("catrock"), ultramafic, minor chlorite-actinolite schists and banded chert units, siltstones and tuffs. This package is interpreted as the eastern limb of the Benalla Antiform. Archaean structurally controlled mesothermal lode gold deposits. There is potential for remobilised primary magmatic mineralisation eg associated with Syenite intrusions eg Red Dog, and VMS gold copper mineralisation such as Nangaroo
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain 	 Not applicable for the reporting of geochemical sampling results. No Drilling undertaken.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 GME Resources has reported raw assays for soil sampling with no further criteria applied Not applicable for the reporting of soil sampling results. No metal equivalent values are used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Soil sampling generate a set of point data. In aggregation these may define an anomaly whose size and geometry becomes apparent. No structural context is gleaned from this dataset Not applicable for the reporting of soil sampling results. Not applicable for the reporting of soil sampling results.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to body of this announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Results have been reported for the main elements targeted (Au, As, Sb, Bi, Ni, Co, Ca, Cr, Cu) for all soil samples greater than 10ppb Au. Interpretation of other elements included in the assay method is ongoing. Results summarised in the report are referenced to appropriate detail for large datasets, ranges of results are provided Not applicable for the reporting of soil sampling results.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Refer to body of text and this appendix All meaningful and material information has been included in the body of the text. The use of exploration data used as background for information in this report, has been referenced to earlier announcements where the data source and technical descriptions have been included There is no other exploration data which is considered material to the results reported in this announcement.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further work is described in the body of the announcement. Further work is proposed and is subject to both budgetary constraints and to new information coming to hand which may lead to changes in the proposed work Refer to body of report